Using process address space on the GPU

Jérdome Glisse

September 2013

‘ redhat

Jérdme Glisse - Using process address space on the GPU 1/18



Motivation

Memory management
Hardware solution
Software solution

On the graphic side

J e Glisse - Using process address space on the GPU



The middle man

void vec_add(float xvr, float xva, float *vb, unsigned s
{

gpu_bo xgpu_a, xgpu_b, xgpu_r;

gpu_a = gpu_alloc(sizeof(float
gpu_b = gpu_alloc(sizeof(float) * size);
gpu_r gpu_alloc(sizeof(float) * size);
gpu_upload(gpu_a, va, sizeof(float)*size);
gpu_upload(gpu_b, vb, sizeof(float)*size);

% size);

~— —

gpu_shader_execute(vec_add_shader, gpu_r, gpu_a, gpu_b

gpu_downoad (gpu_r, vr, sizeof(float)*size);

- Jérdme Glisse - Using process address space on the GPU




Cut the middle man

void vec_add(float xvr, float xva, float *vb, unsigned s

{
}

gpu_shader_execute(vec_add_shader, vr, va, vb, size);

- Jérdme Glisse - Using process address space on the GPU



Memory management inherently concurrent

Pagetable concurrent update

» Userspace map/unmap.

» Memory reclaim.

Deduplication (KSM).
Migration (NUMA architecture).

v

v

» Compaction.

The more memory pressure the more concurrent update.

Jérdme Glisse - Using process address space on the GPU

\ 2



Synchronization

Pagetable update

» Concurrency imply no serialization.
» Pagetable is synchronization point.

» Save pte (pagetable entry).
» Perform job (swapping, migrating, ...).
» Check pte is same if so update, otherwise back off.

» Page backing an address might change at any time.
» Pinning would defeat memory management.

» Taking reference defeat memory management too.

Jérdme Glisse - Using process address space on the GPU

\ 7



Virtualization

» Host kernel has global overview.
» Guest kernel has local overview.

» Efficiency needs communication both ways.

Meet the mmu notifier API

» Bracket large pagetable update with range start/end callback.

v

Allow proper youngness accounting

v

No serialization, concurrent notification on overlapping range.

Jérdme Glisse - Using process address space on the GPU

\ 7



Catch me if you can

> Pagetable is a moving target.
> Page behind an address might change at any time.

» Playing catchup.

Mirroring process address space requirements

» Both CPU and GPU use same page for same address.
» Concurrent access by both (in most cases at least).
> No pinning.

No references.

v

Jérdme Glisse - Using process address space on the GPU

\ 7



Road forks

» Hardware solution.

» Software solution.

Jérdme Glisse - Using process address space on the GPU



Meet the new middle man, IOMMU
IOMMU original motivation

» |/O protection and isolation (security).

» Easy remapping and scatter gather.

» Middle man between device and system memory.
» Virtualization and device isolation.

> ...

IOMMU unique position

Middle man.

Close CPU (same die since memory controller got merge).
IOMMU can be tie to specific CPU.

IOMMU can understand CPU pagetable format.

IOMMU can walk any process pagetable and relay information.

v

v

v

v

v

Jérdme Glisse - Using process address space on the GPU

\ 7



IOMMU and the PCIE ATS/PASID case

» PASID = Process address space identifiant.
» Unique ID associated with a process and thus a pagetable.
» Device can tell IOMMU which process they are interested in.

>

ATS PCIE specification

» ATS = address translation service.

v

IOMMU translate virtual address to physical address.
» Device can cash in TLB IOMMU translation.
» Device must offer TLB flush/invalidation mechanism.

» Carry over protection (read, write, execute, ...)

- Jérdme Glisse - Using process address space on the GPU



How device make use of address translation
Device pagetable case

Device manage its own pagetable, a bit flag in each entry tell if the
address should use IOMMU address translation or not.

» Flexible, can mix VRAM and SRAM.
» Flag on any level of the pagetable (TLB cache optimization).

» Complex TLB cache and memory controller.

Device use aperture case

Address inside (or outside) aperture use ATS/PASID.
Address outside (or inside) usual device memory controller.
Not flexible.

v

v

v

» Coarse granularity.

v

Simpler memory controller and TLB cache.

Jérdme Glisse - Using process address space on the GPU

\ 7



The limits of hardware solution

Partial solution

» One way, device asking pagetable controlled by CPU.
» Can not copy temporarily data into VRAM.

IOMMUV2 linux limitations

» |[OMMU use empty pagetable during CPU pagetable update :
» Add latency
» Can be very frequent with memory pressure.
» Solvable by adding a flag to CPU pagetable entry

Jérdme Glisse - Using process address space on the GPU

\ 7



GPUs are VRAM junkies

Never fast enough, never big enough

» GPU crave for big bandwidth and low latency.
» VRAM up to 200GB/s vs 20GB/s for system memory.
> Up to 4 times lower latency with VRAM.

» Such bandwith unlikely to happen soon for system memory.

Software solution

» Use of VRAM require change to linux kernel.
» Kernel must know about VRAM and where are things.

» Not exclusive with hardware solution. Software can handle
VRAM object only.

Jérdme Glisse - Using process address space on the GPU

\ 7



Challenges

> Device pagetable update can not be done from CPU.

» Serialization between CPU and device pagetable.

» Pagetable coherency (same page backing same address).
» Serialization might badly hurt performances.

> Minimize changes needed to core mm codepath.

» Avoid disruptive changes.

» Do not break linux API (like memory cgroup).

» Add another point of failure for process or file corruption.

|

Jérdme Glisse - Using process address space on the GPU

\ 7



It is happening

NVIDIA.

» Partnership between NVidia and Red Hat.
» Working prototype.

» Should be soon send as an RFC upstream.

Jérdme Glisse - Using process address space on the GPU

\ 7



Open and useful to other

Generic device agnostic APl. No assumption on what the device do.

Useful for any hardware with :

Pagetable and support true pagefault.

v

v

Support read only page entry.

v

Preemptable workload.

v

Page size on the device can be different from the CPU.

Best to have :

» Dirty accounting to avoid over dirtying.
» Fast preemption.
» Fast device page table update.

> ...

Jérdme Glisse - Using process address space on the GPU

\ 7



Graphic use case

v

Texture upload without memcpy.

v

Next sparse texture extension automatic load from disk.

v

GL using process address for seemless compute shader.
Cache policy need custom API (UC, WC, ...).

v

- Jérdme Glisse - Using process address space on the GPU



	Motivation
	Memory management
	Hardware solution
	Software solution
	On the graphic side

